国产熟人av一二三区_99久久99久久精品国产片_大屁股人妻女教师撅着屁股_六月丁香婷婷色狠狠久久_香蕉久久久久久久av网站

當(dāng)前位置:南通康誠重工機械有限公司 >> 新聞中心 >> 連續(xù)過程中的PID控制簡介(英文)

連續(xù)過程中的PID控制簡介(英文)


A continuous process is one in which the output is a continuous flow. Examples are a chemical process, a refining process for gasoline, or a paper machine with continuous output of paper onto rolls. Process control for these continuous processes cannot be accomplished fast enough by PLC on-off control. Furthermore, analog PLC control is also not effective or fast enough by PLC on-off control. Furthermore, analog PLC control is also not effective or fast enough. The control system most often used in continuous processes is PID (proportional-integral-derivative) control. PID control can be accomplished by mechanical, pneumatic, hydraulic, or electronic control systems as well as by PLCs. Many medium-size PLCs and all large PLCs have PID control functions, which are able to accomplish process control effectively. In this chapter, we discuss the basic principles of PID control. We then explain the effectiveness of PID control by using typical process response curves and show some typical loop control and PID functions. Loop and PID control are designations used interchangeably by different manufacturers. Actually, some loop controls are notZSL大型冷礦振動篩機 strictly the PID type. However, assume they are the same.

PID Princi震動落砂機ples

PID (proportiTB系列垂直斗式提升機onal-integral-derivative) is an effective control system for continuous processes that performs two control tasks. First, PID control keeps the output at a set level even though varying process parameters may tend to cause the output to vary from the desired set point. Second, PID promptly and accurately changes the process level from one set point level to another set point level. For background, we briefly discuss the characteristics of each of the PID control components: proportional, integral, and derivative.

Proportional control, also known as ratio control, is a control system that corrects the deviation of a process from the set level back toward the set point. The correction is proportional to the amount of error. For example, suppose that we have a set point of 575 cubic feet per minute (CFM) in an airflow system. If the flow rises to 580 CFM, a corrective signal is applied to the controlling air vent damper to reduce the flow back to 575 CFM. If the flow somehow rises to 585 CFM, twice the deviation from set point, a corrective signal of four timeDY型移動式輸送機s the magnitude would be applied for correction. The larger corrective signal theoretically gives a faster return to 575 CFM. In actuality, the fast correction is not precise. You return to a new set point at the end of the correction, for example, 576.5 CFM, not 575 CPM. Proportional control does not usually work effectively by itself, resulting in an offset error.

To return the flow to the original set point, integral control, also known as reset control, is added. Note that integral control cannot be used by itself. Remember, with proportional control only, we had an output error fYZS圓振動篩rom our original set point. We ended up at 576.5 CFM, not 575 CFM. Integral control senses the product of the error, 1.5 CFM, and the time the error has persisted. A signal is developed from this product. Integral control then uses this product signal to return to the original set point. An integral control signal can be used in conjunction with the proportional corrective signal. In the controller, the added integral signal reduces the error signal that caused the output deviation from the set point. Therefore, over a period of time, the process deviation from our original 575 CFM is reduced to minimum. However, this correction takes a relatively long period of time.


FIGURE 23-1 Block Diagram of a Typical PID振動給料盤 Controller

To speed up the return to the process control, point, derivative control is added to the proportional-integral system. Derivative control, also known as rate control, produces a corrective signal based on the rate of change of the signal. The faster the change from the set point, the larger the corrective signal. The derivative signal is added to the proportional-integral system. This gives us faster action than the proportional-integral system signal alone. A typical PID control system is shown in block diagram form in figure 23-1. This configuration is the commonly used parallel type. The controller output signal 同步碎石封層of figure 23-1 is utilized through a control system to return the process variable to the set point.

An illustration of a system using PID control is shown in figure 23-2. In this system, we need a precise oil output flow rate. The flow rate is controlled by pump motor speed. The pump motor speed is controlled through a control panel consisting of a variable-speed drive. In turn, the drive's speed control output is controlled by an eleTD、D型斗提機ctronic controller. The electronic controller output to the drive is determined by two factors. The first factor is the set point determined by a dial setting (or equivalent device). Second, a flow sensor feeds back the actual output flow rate to the electronic controller. The controller compares the set point and the actual flow. If they differ for some reason, a corrective signal change is sent to the motor controller. The motor controller changes motor speed accordingly by changing the voltage applied to the motor. For example, if the output oil flow rate goes below the set point, a signal to speed up the motor is sent. The controller then uses PID control to make the correction promptly and accurately to return to the set point flow. If the dial is changed to a new setting, the function of the PID system is to reach the new set point as quickly and accurately as possible.


F頁巖粉碎機IGURE 23-2 General Control System Diagram—Hydraulic Pump

Typical Continuous Process Control Cu螺旋粉料輸送機rves

To illustrate some of the possible sne斗式提升機ystem response curves for process control systems, we will use the electromechanical system shown in figure 23-3. By response curves, in this example, we mean output position versus time. The curves to be shown are for various types of control, including PID.

Figure 23-3 shows a control system with a feedback loop, which can be PID. The dial is set to a position in degrees, and the output device is to take the position set on the dial圓錐破石機. The output is to follow quickly and accurately any change from one dial setting to another.


FIGURE 23-3 Position Indicator with PID Contr輸送機ol

Furthermore, the output position should not drift out of position over a period of time. Another factor is that the indicator can have two different weights, depending on the application. These are 5 pounds and 20 pounds. Obviously, the output drive will tend to operate more slowly for 20 pounds than for 5 pounds, unless a proper PID control is set up to compensate for w方形振動篩eight differences.

For illustration we very quickly turn the dial from 0 degrees to 108 degrees at 3 seconds after time base 0. Ideally, the position indicator should instantaneously reach 108 degrees, as shown in figure 23-4. Obviously, this do振動放礦機es not happen in actual practice.


FIGURE 23-4 Ideal Position Control Positioning Curve

Figure 23-5 shows five possible curves for different types of control. A is an idealized movement but takes 4 seconds. B undershoots or overshoots the mark. C shows cyclic response and reaches an angular point near the set position but oscillates for a few seconds before reaching the proper position. D shows damped response and reaches the new position exponentially but takes a long time. E reaches the new position but continually oscillates about the final setting. None of these curves shows an acceptable control characteristic for accurate and prompt operation.


FIGURE 23-5 Typical Response Curves

By comparison, PID control obtains the most ideal response possible—not perfect, but the best we can do. A curve for this control is shown in figure 23-6.


FIGURE 23-6 Ideal PID Position Control

PID Modules

PLCs often come equipped with PID modules, used to process data obtained by feedback circuitry. Most such modules contain their own microprocessor. Since the algorithms needed to generate the PID functions are rather complex, the PID microprocessor relieves the CPU of having to carry out these time-consuming operations.

To understand the PID module, refer to figure 23-7. The PLC sends a set-point signal to the PID module. The module is made up of three elements: the proportional, integral, and derivative circuits. The proportional circuit creates an output signal proportional to the difference between the measurement taken and the setpoint entered in the PLC. The integral circuit produces an output proportional to the length and amount of time the error signal is present. The derivative circuit creates an output signal proportional to the rate of change of the error signal.


FIGURE 23-7 Block diagram of PID Module

The input transducer generates an output signal from the process being controlled and feeds the measured value to the PID module. The difference between the set point coming from the PLC and the measured value coming from the input transducer is the error signal. Some sort of correcting device, such as a motor control, valve control, or amplifier, takes the error signal and uses it to control the correction sent to the process being controlled. (

 

相關(guān)資訊

相關(guān)產(chǎn)品

最新產(chǎn)品

CZ系列倉壁振動器
倉壁振動器用于防止和排除各種料倉由于物料的內(nèi)摩擦、潮解、帶電、成分偏析等原因引起的“堵塞”、“塔拱”現(xiàn)象;亦可用于清除各種倉壁、管道粘結(jié)物料
防閉塞裝置(ZFB)
ZFB防閉塞裝置(倉壁振動器)廣泛應(yīng)用于冶金、化工、建材、火電、煤炭、食品、水泥、制藥、化肥、糧食、鑄造、陶瓷、磨料等行業(yè)中貯料倉的防閉塞之用。
慣性振動器(ZG)
ZG慣性振動器廣泛用來作為各種振動機械(如振動給料機、振動輸送機、振動篩分機、振動落砂機、振動破碎機、振動提升機、振動試驗臺等)的激振源
振動電機
振動電機礦山、鑄造、冶金、煤炭、電力、糧食、港口、化工、建材、機械、陶瓷等工業(yè)部門的理想配套設(shè)備

最新資訊

隨機鏈接

管式電機振動輸送機

稱重給料機

鏈斗式輸送機

糧食輸送設(shè)備

螺旋式輸送機

板式給料機

南通康誠重工機械有限公司   地址: 江蘇省海安縣開發(fā)區(qū)南海大道(東)8號 網(wǎng)址: http://www.oktxc.cn

電話:0513-80686000  88773999 傳真:0513-80686060

 聯(lián)系人: 吳先生 13506276000(24小時服務(wù)熱線) E-mail:[email protected] 技術(shù)支持:天正企劃

分享到: